0=-16t^2-24t+1400

Simple and best practice solution for 0=-16t^2-24t+1400 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2-24t+1400 equation:



0=-16t^2-24t+1400
We move all terms to the left:
0-(-16t^2-24t+1400)=0
We add all the numbers together, and all the variables
-(-16t^2-24t+1400)=0
We get rid of parentheses
16t^2+24t-1400=0
a = 16; b = 24; c = -1400;
Δ = b2-4ac
Δ = 242-4·16·(-1400)
Δ = 90176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{90176}=\sqrt{64*1409}=\sqrt{64}*\sqrt{1409}=8\sqrt{1409}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{1409}}{2*16}=\frac{-24-8\sqrt{1409}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{1409}}{2*16}=\frac{-24+8\sqrt{1409}}{32} $

See similar equations:

| a=1/2(14+4)5 | | q–6=20 | | x15=225 | | -x+144=284 | | 5(-2x+`10)=170 | | -21=-3-6x | | 9s2−9s−3=0 | | (0.19x+65)+(0.06x+27)=180 | | 42=8y+10 | | x+x*0.75=35 | | 7x+3(x+2)=-4+7(7+7x) | | -14=7w+2w+8w | | 4x+2x–5=13 | | X=10÷y-3 | | 3(n-1)+4=22 | | 3(n–1)+4=22 | | 8(d−83)=48 | | 5=8r-35 | | -3=5-x/2 | | 2(a+5)(a-3)=2a2+4a-30 | | 63=7(x−87) | | 3(2n-3)=9 | | 63=7(j−87) | | -15=6x-3x | | 2x+24=4x+4. | | 8-(7/10)t=6(1/5)t | | -15=6x–3x | | 0=6(x+5) | | 0=6(x+5) | | a/2-21/2a+4=16 | | x+17=22-22-22x=0 | | 3(2n–3)=9 |

Equations solver categories